
DeepAnalyze:
Learning to Localize
Crashes at Scale

Manish Shetty, Chetan Bansal, Suman Nath,

Sean Bowles, Ozgur Arman, Henry Wang, Siamak Ahari

2

!Analyze

SOSP 2009

A debugger extension built and maintained over 20+ years for automated
analysis of crash dumps.

• Deployed as part of Windows Error Reporting (WER)
Service.

• Does crash bucketization and localization.

• O(100K) lines of code and 50+ custom plugins.

• Analyzes millions of crashes per day.

• Significant usage by 1st party and 3rd party developers.

3

!Analyze Challenges

SOSP 2009

Despite the success, !Analyze has several limitations which needs to be
addressed to maximize coverage and usability.

• Monolithic code written over two decades.

• Relies on 100(s) of heuristics encoded by domain experts.

• Code changes can take one to two months to deploy.

• New applications require custom plugins.

• Limited support for analyzing Linux and Mac OS crashes.

Can we augment !Analyze with data-driven approaches?

4

DeepAnalyze - Overview

Leverage the recent advances in Deep Learning and NLP to automate crash dump
analysis.

Goals

• Bootstrap using data from !analyze for ML training and treat it as the source of truth.

• Move away from manually curated rules and heuristics, reduce deployment time.

• Enable crash dump analysis for new binaries without writing custom rules and
plugins.

• Build global models which can be used for analyzing Linux crashes.

5

DeepAnalyze - Overview

Scenario: ML based prediction of blame frame to help developers localize the root
cause.

Blame Frame Analysis

6

Related Work

ISSTA ‘14

ICSE ‘16

FSE ‘20

JSS ‘19

7

Our Approach

Empirical Analysis
of Crashes

DeepAnalyze
Design

Findings & Insights
DeepAnalyze

Evaluation

8

Empirical Analysis of Crashes

• Analyzed 362K crashes from diverse sources to understand various
properties of crash stacks.

• Used insights from analysis to design and develop DeepAnalyze.

Basic statistics of the study dataset

9

💡 Finding #1

Crashes come from many different sources.
Hence, application-specific heuristics for
crash localization does not scale well.

Top-25 crashing binaries

Types of top-100 crashing software components

Empirical Analysis
of Crashes

10

Empirical Analysis
of Crashes

💡 Finding #2

Most (61%) of the crashes are caused by
memory-related errors.

💡 Finding #3

Blamed frames are more likely to be located
at the top of the stack. In 33% cases,
however, blamed frame is below the top
frame

11

💡 Finding #5

Whether a method is blamed or not often
depends on the Context it appears in, i.e.,
methods that appear above and below it in
the stack.

Empirical Analysis
of Crashes

12

💡 Finding #5

Whether a method is blamed or not often
depends on the Context it appears in, i.e.,
methods that appear above and below it in
the stack.

Empirical Analysis
of Crashes

𝐵𝑙𝑎𝑚𝑒𝑅𝑎𝑡𝑖𝑜 𝑚𝑒𝑡ℎ𝑜𝑑 =
#𝑐𝑟𝑎𝑠ℎ 𝑠𝑡𝑎𝑐𝑘𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑚𝑒𝑡ℎ𝑜𝑑 𝑖𝑠 𝑏𝑙𝑎𝑚𝑒𝑑

#𝑐𝑟𝑎𝑠ℎ 𝑠𝑡𝑎𝑐𝑘𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑒𝑡ℎ𝑜𝑑

13

DeepAnalyze

• We have built several heuristics-based baseline models for blame frame
prediction.

• We have built a Multi-Task learning based model for blame frame identification.

• Model utilizes both local and semantics features.

• Local features: Relative Frame position, Is App Frame, Is Kernel Code, etc.

• Semantic features: TF-IDF representation of the Namespace and the Method
in the Frame.

• Model incorporates global view of a stack (i.e., context) while making predictions.

14

Formulation
Natural Language Processing

John lives in Seattle

Sentence: A sequence of words

Sequence Labeling

John lives in Seattle

PER O O LOC

Crash Dump Analysis

Frame_0 Frame_1 Frame_2 Frame_3

Stack Trace: A sequence of frames

Blame Frame Prediction

Frame_0 Frame_1 Frame_2 Frame_3

notBlame notBlame isBlame notBlame

15

Multi-Task
Model
Architecture

• Combines sequence labeling with
Multi-Task learning.

• Enables joint learning from
complementary tasks for better
generalization.

16

Model
Evaluation

Model Comparison with Baselines

• Baseline models using x64 User
Mode crash dumps from
Edge, Excel, Word, and Outlook.

• DeepAnalyze model which
leverages Multi-Task sequence
learning outperforms all others.

• DeepAnalyze has an average
accuracy of 0.90.

17

Model
Evaluation

Model Comparison with Baselines

• Baseline models using x64 User
Mode crash dumps from
Edge, Excel, Word, and Outlook.

• DeepAnalyze model which
leverages Multi-Task sequence
learning outperforms all others.

• DeepAnalyze has an average
accuracy of 0.90.

18

Model
Evaluation

Model Comparison with Baselines

• Baseline models using x64 User
Mode crash dumps from
Edge, Excel, Word, and Outlook.

• DeepAnalyze model which
leverages Multi-Task sequence
learning outperforms all others.

• DeepAnalyze has an average
accuracy of 0.90.

How do we scale to new applications and platforms?

19

Cross-App Crash
Localization

Fine-tuning vs Training from scratch

• Trained DeepAnalyze on a global
dataset that does not include any
Edge crashes.

• Global models can be fine-tuned to
app-specific crashes with very
minimal labeled data.

• Reaches ≈0.90 accuracy with just
2000 samples.

• Near-zero training cost as opposed
to training app specific models.

20

Cross-App Crash
Localization

Fine-tuning vs Training from scratch

• Trained DeepAnalyze on a global
dataset that does not include any
Edge crashes.

• Global models can be fine-tuned to
app-specific crashes with very
minimal labeled data.

• Reaches ≈0.90 accuracy with just
2000 samples.

• Near-zero training cost as opposed
to training app specific models.

21

Cross-App Crash
Localization

Fine-tuning vs Training from scratch

• Trained DeepAnalyze on a global
dataset that does not include any
Edge crashes.

• Global models can be fine-tuned to
app-specific crashes with very
minimal labeled data.

• Reaches ≈0.90 accuracy with just
2000 samples.

• Near-zero training cost as opposed
to training app specific models.

22

Summary

• Developed DeepAnalyze using recent advances in ML and NLP for crash
localization.

• Proposed a multi-task learning based model for blame frame prediction.

• Showed an effective transfer learning and fine-tuning approach for cross-
application crash localization.

• Expand to cross-platform crash localization with Linux crashes.

• Extending models to other tasks such as fault localization and bucketization
at thread level.

23

Questions?

