DeepAnalyze:
Learning to Localize
Crashes at Scale

Manish Shetty, Chetan Bansal, Suman Nath,

Sean Bowles, Ozgur Arman, Henry Wang, Siamak Ahari

— Microsoi?

lAnalyze

= Microsoft

A debugger extension built and maintained over 20+ years for automated

analysis of crash dumps.

* Deployed as part of Windows Error Reporting (WER)
Service.

* Does crash bucketization and localization.
 0O(100K) lines of code and 50+ custom plugins.
* Analyzes millions of crashes per day.

» Significant usage by 15t party and 3" party developers.

Debugging in the (Very) Large:
Ten Years of Implementation and Experience

Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul,

Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

examines program state to deduce where algorithms or state

n updated program.'

e is harder. When the number of

SOSP 2009

AN
00[]%\

= Microsoft

lAnalyze Challenges

Despite the success, |Analyze has several limitations which needs to be
addressed to maximize coverage and usability.

* Monolithic code written over two decades. Debugging in the (Very) Large:

Ten Years of Implementation and Experience

Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul,

Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt
Microsoft Corporation
One Microsoft Way

* Relies on 100(s) of heuristics encoded by domain experts.

examines program state to deduce rithms or state

* Code changes can take one to two months to deploy.

lection, ch minimizes overhead for
dev i

* New applications require custom plugins.

SOSP 2009
* Limited support for analyzing Linux and Mac OS crashes.

Can we augment !Analyze with data-driven approaches? Q

00[]%\

= Microsoft

DeepAnalyze - Overview

Leverage the recent advances in Deep Learning and NLP to automate crash dump
analysis.

Goals
* Bootstrap using data from lanalyze for ML training and treat it as the source of truth.
* Move away from manually curated rules and heuristics, reduce deployment time.

e Enable crash dump analysis for new binaries without writing custom rules and
plugins.

* Build global models which can be used for analyzing Linux crashes.

AN
000“\

DeepAnalyze - Overview

Scenario: ML based prediction of blame frame to help developers localize the root
cause.

\L;O R v kernel32.dIl TIsGetValue
L:1) msedge.dll!base::internal::PartitionMalloc
72 SRR msedge.dll!_malloc_base
L: 3| (SR RK0P7) msedge.dllloperator new
(L:4 R msedge.dlllquic::QuicStreamSequencerBuffer::CopyStreamData
L: 5 msedge.dll!quic::QuicStreamSequencerBuffer::OnStreamData
\ﬁi msedge.dll!'quic::QuicStreamSequencer::OnFrameData
(57 L: 7] msedge.dll!quic::QuicStreamSequencer::OnStreamFrame

d)— Ii8 A msedge.dll!quic::QuicStream::OnStreamFrame

L9 B SRR msedge.dll!quic::QuicSession::OnStreamFrame

I
O— |L: 10] IR RL00EZ msedge.dll!quic::QuicConnection::OnStreamFrame

é— L1 B SRR msedge.dll!quic::QuicFramer::ProcessletfFrameData

Blame Frame Analysis

= Microsoft

AN
000“\

= Microsoft

Related Work

CrashLocator: Locating Crashing Faults Based on Crash
Stacks

Rongxin Wu§, Hongyu ZhangT, Shing-Chi Cheung§, and Sunghun Kim§
§Depar‘tment of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong, China
{wurongxin, scc, hunkim}@cse.ust.hk

TraceSim: A Method for Calculating
Stack Trace Similarity

Roman Vasiliev*, Dmitrij Koznov', George Chernishev’, Aleksandr Khvorov*!, Dmitry Luciv', Nikita Povarov*
*JetBrains, Saint-Petersburg, Russia
ili ir

TMicrosoft Research

Beijing 100080, China
honzhang@microsoft.com

Abstract—Many contemporary software products have subsys-
tems for automatic crash reporting. However, it is well-known
that the same bug can produce slightly different repo To
manage this problem, reports are usually gmuped often manu-

ABSTRACT crashed modules) at the time of crash, cluster similar crash reports
that are likely caused by the same fault into buckets (categories)

Software crash is common. When a crash occurs, software devel- y :
and present the crash information to developers for debug g

opers can receive a report upon user permission. A crash report
typically includes a call stack at the time of crash. An important crash reporting systems [2, 14, 25] mostly focus on col-
step of debugging a crash is to identify faulty functions, which is and bucketing crash reports effectively. Although the col-
often a tedious and labor-intensive task. In this paper. we propose 1 ging, these systems do
CrashLocator, a method to locate faulty functions usi e Cras not \upp«\ll automatic localization of crashing faults. As a result,
stack information in crash reports. It deduces possible crash traces Z e

ISSTA 14 FSE 20

the pmhlgm of automatic handling of dupl
reports is relevant for both academia and industry.
for pmducls that Bave large userbases, whic 5 is alre: a large body of work in this research area, a
many different approaches to automating this task. Moreover, it provi IdJI’IL its summary

is important to improve quality of triaging due to the big volume meh,‘ different problem formulations. Howe
of reports that needs to be processed properly. Therefore, even . s ato

Contents lists availabl

The Joutnal of Systems and Software SOLTNARE RETracer: Triaging Qrashes by Reverse Execution from
- Partial Memory Dumps

journal homeapag

Weidong Cui Marcus Peinado Sang Kil Cha
Microsoft Research Microsoft Research . KAIST
wdcui@microsoft.com marcuspe@microsoft.com sangkilc@kaist.ac.kr

Yanick Fratantonio Vasileios P. Kemerlis

Does the fault reside in a stack trace? Assisting crash localization by m

predicting crashing fault residence UC Santa Barbara Brown University
nick@cs.ucsb.edu vpk@cs.brown.edu

Yongfeng Gu?, Jifeng Xuan®*, Hongyu Zhang", Lanxin Zhang®, Qingna Fan‘, Xiaoyuan Xie®,
Tieyun Qian? ABSTRACT crash reporting services that automatically collect crashes from mil-

3 o " " lmm of customers and file bug reports based on them. Such ser-
Many software providers operate crash reporting services (o auto-

are critical for software providers because they allow them
matically collect crashes from millions of customers and file bug P

with high customer impact, to file by
and to validate their fixes.
Recently, Apple added crash reporting for apps in the i0S

reports. isel crashes is necessary and important for
software providers because the millions of crashes that may be re-

pried every day are critical in identifying high impact bugs. How-

JSS ‘19 ICSE ‘16

000“\

= Microsoft

= Our Approach

DeepAnalyze DeepAnalyze
Design Evaluation

Empirical Analysis
of Crashes

Findings & Insights

AN
Ogu‘\

Empirical Analysis of Crashes

Analyzed 362K crashes from diverse sources to understand various
properties of crash stacks.

Used insights from analysis to design and develop DeepAnalyze.

of crash stacks ~ 362K
of unique software components
of unique binaries ~ 16.3K

of unique namespaces
of unique methods
of unique blamed methods

Basic statistics of the study dataset

= Microsoft

AN
000“\

I. Microsoft

Empirical Analysis o
of Crashes o 305
gz.o%
ST
oo TINRITIRRITINE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Binary ID
@ Finding #1 Top-25 crashing binaries

Crashes come from many different sources.
Hence, application-specific heuristics for
crash localization does not scale well.

= APPLICATION

DRIVER

39.0%

LIBRARY

SERVICE

= OPERATING
SYSTEM

Types of top-100 crashing software components

Empirical Analysis
of Crashes

Q Finding #2

Most (61%) of the crashes are caused by
memory-related errors.

Q Finding #3

Blamed frames are more likely to be located
at the top of the stack. In 33% cases,
however, blamed frame is below the top
frame

Problem Class

Count%
5% 10% 15%

3

INVALID_POINTER_READ
NULL_POINTER_READ
APPLICATION_FAULT
HEAP_CORRUPTION
NULL_CLASS_PTR_READ
NULL_CLASS_PTR_WRITE
BREAKPOINT
MEMORY_CORRUPTION
CLR_EXCEPTION
INVALID_POINTER_WRITE
NULL_POINTER_WRITE
ASSERTION_FAILURE
MISSING_DUMP_APPCRASH
CPP_EXCEPTION
STACK_OVERFLOW

b < bt =
= (=] w =]

Cumulative Density
S

e
o

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Crash Location

B® Microsoft

Empirical Analysis
of Crashes

Q Finding #5

Whether a method is blamed or not often
depends on the Context it appears in, i.e.,
methods that appear above and below it in
the stack.

~ O 01 B~ w N

~N o O AW N

B® Microsoft

msedge_elf.dl1l!crash_reporter: :DumpWithoutCrashing

msedge.
msedge.
msedge.
msedge.
msedge.

msedge.

dll!base: :debug: :DumpWithoutCrashing

dll!gl:
dll!gl:
dll!gl:
dll!gl:

:DirectCompositionChildSurfaceWin
:DirectCompositionChildSurfaceWin
:DirectCompositionChildSurfaceWin

:GLSurfaceAdapter: :PostSubBuffer

::ReleaseDrawTexture
: :SwapBuffers
: :SwapBuffers

dll!gpu: :PassThroughImageTransportSurface: :PostSubBuffer

(a) Crash stack 1

igd1@iumd64.d11!0penAdapter10_2

d3d11.d11!NDXGI: :CDevice::RotateResourceldentities
dxgi.dl1!CDXGISwapChain: :PresentImplCore
dxgi.dl1!CDXGISwapChain: :PresentImpl

dxgi.dl1!CDXGISwapChain: :[IDXGISwapChain4]: :Present]

msedge.dll!gl::DirectCompositionChildSurfaceWin: :ReleaseDrawTexture

msedge.dll!gl::DirectCompositionChildSurfaceWin: :SwapBuffers

(b) Crash stack 2

Empirical Analysis
of Crashes

Q Finding #5

Whether a method is blamed or not often
depends on the Context it appears in, i.e.,
methods that appear above and below it in
the stack.

B® Microsoft

=
-]

—
oo

2
h

b
IS

Cumulative Density

o
=

0.2 0.4 0.6 0.8 1.0
Blame Ratio

=
o

#crash stacks where the method is blamed

Bl Rati thod) =
ameRatio(method) #crash stacks containing the method

13

= Microsoft

DeepAnalyze

 \We have built several heuristics-based baseline models for blame frame
prediction.

* We have built a Multi-Task learning based model for blame frame identification.
 Model utilizes both local and semantics features.
* Local features: Relative Frame position, Is App Frame, Is Kernel Code, etc.

 Semantic features: TF-IDF representation of the Namespace and the Method
in the Frame.

 Model incorporates global view of a stack (i.e., context) while making predictions.

AN
000“\

= Formulation
Natural Language Processing

Sentence: A sequence of words

John lives in Seattle

Sequence Labeling

John lives in Seattle

PER @) 0] LOC

14

= Microsoft

Crash Dump Analysis

Stack Trace: A sequence of frames

Frame_ 0 Frame_ 1 Frame 2 Frame 3

Blame Frame Prediction

notBlame notBlame isBlame notBlame

AN
000‘\

Multi-Task
\VileYol=]
Architecture

Combines sequence labelingwith
Multi-Task learning.

Enables joint learning from
complementary tasks for better
generalization.

Frame Featurizer

Local Features

isKernelCode,
isException, etc.

Semantic Features

Tf-Idf for
namespace, method

v
4 R

(Attention)

Blame Frame
Prediction

.
& =

(Attention j

Problem Class
Prediction

N s

I. Microsoft

B® Microsoft

Model

« Baseline models using x64 User Model Application Avg
Mode crash dumps from Edge Excel Word Outlook
Edge, Excel, Word, and Outlook.
TopFrame 0.64 0.77 0.70 0.62 0.68
DeepAnalyze model which SecondFrame 0.24 0.07 0.10 0.13 0.13
leverages Multi-Task sequence MosFFreqTopFr{ﬂme 0.31 0.42 0.39 0.39 0.38
. Logistic Regression 0.86 0.81 0.75 0.69 0.77
learning outperforms all others.)
BiLSTM-CRF-Attn 0.91 0.90 0.80 0.81 0.85
DeepAnalyze 093 094 0.85 0.88 0.90

DeepAnalyze has an average
accuracy of 0.90.

Model Comparison with Baselines

B® Microsoft

Model

« Baseline models using x64 User Model Application Avg
Mode crash dumps from Edge Excel Word Outlook
Edge, Excel, Word, and Outlook.
TopFrame 0.64 0.77 0.70 0.62 0.68
DeepAnalyze model which SecondFrame 0.24 0.07 0.10 0.13 0.13
leverages Multi-Task sequence MosFFreqTopFr{ﬂme 0.31 0.42 0.39 0.39 0.38
. Logistic Regression 0.86 0.81 0.75 0.69 0.77
learning outperforms all others.)
BiLSTM-CRF-Attn 0.91 0.90 0.80 0.81 0.85
DeepAnalyze 093 094 0.85 0.88 0.90

DeepAnalyze has an average
accuracy of 0.90.

Model Comparison with Baselines

B® Microsoft

Model

« Baseline models using x64 User Model Application Avg
Mode crash dumps from Edge Excel Word Outlook
Edge, Excel, Word, and Outlook.
TopFrame 0.64 0.77 0.70 0.62 0.68
DeepAnalyze model which SecondFrame 0.24 0.07 0.10 0.13 0.13
leverages Multi-Task sequence MosFFreqTopFr{ﬂme 0.31 0.42 0.39 0.39 0.38
. Logistic Regression 0.86 0.81 0.75 0.69 0.77
learning outperforms all others.)
BiLSTM-CRF-Attn 0.91 0.90 0.80 0.81 0.85
DeepAnalyze 093 094 0.85 0.88 0.90

DeepAnalyze has an average
accuracy of 0.90.

Model Comparison with Baselines

__

—_—_———— e a1

Cross-App Crash
Localization

Trained DeepAnalyze on a global
dataset that does not include any
Edge crashes.

Global models can be fine-tuned to
app-specific crashes with very
minimal labeled data.

Reaches =0.90 accuracy with just
2000 samples.

Near-zero training cost as opposed
to training app specific models.

B® Microsoft

Test Accuracy

0.4 —8— Fine-Tune-Global
—8— From-Scratch-Local

ﬂ?} | | | |

0 100 200 500 1000 2000 5000 10000

#Training Samples

Fine-tuning vs Training from scratch

Cross-App Crash
Localization

Trained DeepAnalyze on a global
dataset that does not include any
Edge crashes.

Global models can be fine-tuned to
app-specific crashes with very
minimal labeled data.

Reaches =0.90 accuracy with just
2000 samples.

Near-zero training cost as opposed
to training app specific models.

B® Microsoft

Test Accuracy

0.4 —8— Fine-Tune-Global
—8— From-Scratch-Local

ﬂ?} | | | |

0 100 200 500 1000 2000 5000 10000

#Training Samples

Fine-tuning vs Training from scratch

Cross-App Crash
Localization

Trained DeepAnalyze on a global
dataset that does not include any
Edge crashes.

Global models can be fine-tuned to
app-specific crashes with very
minimal labeled data.

Reaches =0.90 accuracy with just
2000 samples.

Near-zero training cost as opposed
to training app specific models.

B® Microsoft

Test Accuracy

0.4 —8— Fine-Tune-Global
—8— From-Scratch-Local

ﬂ?} | | | |

0 100 200 500 1000 2000 5000 10000

#Training Samples

Fine-tuning vs Training from scratch

22

Summary

* Developed DeepAnalyze using recent advances in ML and NLP for crash
localization.

* Proposed a multi-task learning based model for blame frame prediction.

 Showed an effective transfer learning and fine-tuning approach for cross-
application crash localization.

* Expandto cross-platform crash localization with Linux crashes.

 Extending models to other tasks such as fault localization and bucketization
at thread level.

= Microsoft

000“\

Questions?

