
LM Assertions: Computational Constraints for
Self-Refining Language Model Pipelines

Anonymous Author(s)
Affiliation
Address
email

Abstract

Chaining calls to language models (LMs) with composable modules is fueling a1

new way of programming, but ensuring LMs adhere to important constraints still2

requires heuristic prompt engineering. We introduce LM Assertions, a program-3

ming construct for expressing computational constraints that LMs should satisfy.4

LM assertions are an omni-construct that translates to multiple intriguing aspects of5

optimizing LM pipelines. For inference, they facilitate self-refinement by providing6

feedback on erroneous outputs. For in-context learning, LM assertions introduce7

demonstrations that adhere to arbitrary constraints and negative demonstrations that8

the LM must avoid. We report on four diverse case studies for text generation and9

find that LM Assertions improve compliance with imposed rules and downstream10

task performance, passing constraints from 0.0% to 98.0% and generating up to11

166.6% more higher-quality responses.12

1 Introduction13

Language models (LMs) now power various applications, from conversational agents to writing14

assistants. However, the probabilistic nature of LMs often results in outputs that may not align with the15

domain’s constraints or the larger pipeline in which the LM is used. To address this, researchers have16

explored various techniques, including applying constrained decoding [7, 8], exploring approaches17

for self-reflection and tree search [12, 18, 21], building domain-specific languages and like LMQL [2],18

or monitoring models with assertions and guardrails [9, 15] to steer LMs towards more controllable19

outputs.20

Recently, several LM frameworks like LangChain [4] and DSPy [10, 11] provide developers with21

interfaces to build compound AI systems to encapsulate LM prompting pipelines [6, 17]. Some offer22

several features to control LM outputs, such as DSPy, which can optimize multi-stage prompts to23

maximize a target metric. However, such pipelines currently do not consider arbitrary computational24

constraints when instructing the LM to follow such constraints and to introspectively self-refine25

outputs. While some of this may be achieved via painstaking “prompt engineering” or other ad hoc26

guidance strategies, such efforts are labor-intensive and conflate the high-level design of new AI27

systems with the low-level exploration of teaching LMs how to follow constraints.28

We propose LM Assertions, a novel programming construct designed to enforce user-specified29

properties on LM outputs within a pipeline. Drawing inspiration from runtime assertions and program30

specifications in traditional programming, LM Assertions are boolean conditions that express the31

desired characteristics of LM outputs. Besides serving as conventional runtime monitors, LM32

Assertions differ from traditional programming language assertions with multiple novel assertion-33

driven optimizations to improve LM programs.34

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Context🤖Query 
Generator RetrieverQuestion 🤖Answer 

Generator Answer
Query

Context + Previous Queries

✓ suggest(len(query) < 100, "Query should be less than 100 chars")

✗ suggest(is_query_distinct(query, prev_queries), f"Query should be 
distinct from {prev_queries}")

UPDATED PROMPT WITH FEEDBACK

Context: . . .
Question: . . .
Past Query: <previous attempt w/ errors> . . .
Instruction: Query should be distinct from . . .

Multi-hop QA Pipeline

Figure 1: An LM pipeline for multi-hop question-answering tasks with a retriever. We introduce
two soft Suggestions: (1) query to retriever should be less than 100 characters; (2) query to retriever
should differ from previous queries. For instance, if the second suggestion fails, LM Assertion
constructs a new prompt to retry the Query Generator module with additional fields, highlighting the
previously generated query and a user-defined error message to help the LM refine its generation.

Assertion-driven backtracking. LM Assertions can facilitate runtime self-refinement in LM35

pipelines at inference time. When a constraint fails, we allow the pipeline to backtrack and retry the36

failing module. Upon the retry attempt, LM Assertions provide feedback and inject the erring outputs37

and user-specified error messages within the prompt, thereby guiding the LM to introspectively38

self-refine outputs. Figure 1 illustrates this within an LM pipeline.39

Assertion-driven example selection. LM Assertions enable guided prompt optimization for in-40

context learning. Integrated with existing in-context learning frameworks, they help select high-quality41

few-shot examples that adhere to the user-specified constraints, which can teach LM programs to42

perform optimal behavior.43

Counterexample bootstrapping. Another important contribution of LM assertions during prompt44

optimization and example selection is developing demonstrations that contain failed examples and45

traces to fix the errors. When such counterexamples are mixed with bootstrapped high-quality few-46

shot examples, the LM is presented with both constructive and instructive behavior and is thereby47

more likely to avoid the same mistakes and perform optimally than compared to prompting LMs48

without assertion-driven backtracking.49

Both example selection and example bootstrapping are essential to in-context learning. When the50

dataset is labeled and aligned with the domain-specific objective, selecting high-quality examples51

provides LM with better context. On the other hand, finding datasets with corresponding labels is52

hard for many domains. Then, it is important to bootstrap demonstrations from existing inputs.53

While previous work [11] supports bootstrapping demonstrations, we argue that assertion-driven54

bootstrapping with counterexamples is more effective.55

56

We evaluate the effectiveness of LM Assertions on four varied knowledge-intensive tasks: multihop57

question answering (MultiHopQA), long format question answering (LongFormQA), formatted58

quiz generation (QuizGen), and valid tweet generation (TweetGen). Our experiments show that59

LM Assertions and assertion-driven backtracking significantly improve LM programs, e.g., from60

generating 34.0% well-formatted quiz questions in JSON to 99.2%. Then, with assertion-driven61

example bootstrapping and counterexample bootstrapping, we see an increase from 0.0% to 98.0%62

in writing tweets without hashtags in TweetGen and a consistent boost on almost all other assertion63

metrics. Finally, with LM Assertions and all assertion-driven optimizations, we see a maximum gain64

2



from 30.2% to 86.1% in generating valid quiz questions based on downstream task performance on65

composite evaluation metrics.66

Our contributions are, first, introducing LM Assertions as a novel abstraction for language model67

programming. Then, we present three novel optimizations for LM pipelines: assertion-driven68

backtracking during inference to help pipelines self-refine, assertion-driven example selection to69

choose more effective few-shot examples for in-context learning, and counterexample bootstrapping70

to augment few-shot examples with erroneous results and corresponding fixes to help models become71

more reliable at complying to user-desired constraints.72

2 Related Work73

Programming LM pipelines. Chaining language model calls with retrieval models and tools has74

become increasingly popular for tackling complex tasks when single LM calls are insufficient. Such75

systems, often referred to as LM pipelines or compound AI systems [22], are showing significant76

performance gains. Frameworks like DSPy[11] or LangChain[4] support the development of such77

LM pipelines from a programmatic perspective.78

An outstanding problem with LM pipelines is that when one module involving an LM call fails to79

generate the desired input, it causes errors that propagate and makes it less likely for succeeding80

LM modules to produce accurate responses and optimal performance. For example, in Figure 1, if81

Query Generator cannot output high-quality queries to the retrieval model, the Answer Generator82

will produce a response with low relevance, thereby failing to produce a correct response to the83

original input question. For this reason, asserting expectant behavior on the output of LMs for single84

components and the overall prompting pipeline is essential to producing optimal performance from85

compound AI systems.86

Programming with constraints. Programming with constraints is standard in most programming87

languages. Languages like Java [1] and Python [14] support assertions as first-class statements88

to perform runtime checks of certain properties. However, systems mostly use runtime checks89

to warn the programmer or abort the execution. When used with try {...} catch {...} blocks,90

programming language assertions are used to break the execution of the original erring code and91

run the mitigating code within the catch. However, each LM component often reflects some level92

of non-determinism when programming LM pipelines, as each call can yield significantly different93

responses. As a result, aborting the execution or executing error-mitigation code when assertions are94

violated is less desirable. Instead, LM Assertions showcase specialized semantics that allows retrying95

the failing LM call and resuming execution with a potentially correct response. These semantics of96

retrying and resuming execution are partly inspired by continuation-passing-style compilation [19]97

and algebraic effects and handlers [13].98

Constraints for machine learning models. Kang et al. [9] proposed a concept called model99

assertions, which can be used to monitor the behavior of ML models and to improve the quality of100

a model in training through data collection and weak supervision. LM Assertions and the pipeline101

optimizations applied in correspondence with the execution differ from model assertions in multiple102

ways: first, LM Assertions can be used for backtracking an LM pipeline to retry a failing module for103

self-refinement, which drastically improves the performance of the pipeline, second, LM Assertions104

can be used as filters to select better examples for few-shot learning; finally, LM Assertions aid in105

generating counterexamples and fixing traces, which further enhance the LM pipeline to learn from106

past failures and improve towards downstream metrics.107

More recent efforts on generating controllable outputs for language models include LMQL [2], NeMo108

Guardrails [15], SGLang [23], etc. Although these systems permit some computation constraints,109

they work precisely on a single LM call without consideration of a wider prompting pipeline setting,110

which misses the assertion-driven optimization opportunities proposed by this work.111

3



3 LM Pipelines: A Motivating Example112

Aiden is a developer building an LM pipeline for multi-hop question-answering. The task involves113

the LM performing a series of inferential steps (multi-hop reasoning) before answering a question114

while utilizing a retriever to get relevant context.115

Aiden may design the pipeline in Figure 1, where the LM generates search queries to collect relevant116

context from a retriever for iterations and aggregate them to generate the answer. However, many117

issues with the pipeline might affect its performance. For instance, since questions are complex, the118

generated search query could be long and imprecise, resulting in irrelevant retrieved context. Another119

issue is that similar multi-hop queries would result in redundant retrieved context. One might observe120

that these are properties of generated queries that are computationally verifiable and, if expressible as121

constraints on the pipeline, can improve its performance.122

Figure 1 shows an example of using LM Assertions. To mitigate the issues above, Aiden introduces123

two soft LM Assertions (LM Assertions that are desired but not required, see Section 4 for a formal124

definition of softness): first, they restrict the length of the query to be less than 100 characters,125

aiming for precise information retrieval. Second, they require the query generated at each hop to be126

dissimilar from previous hops, discouraging retrieval of redundant information. They specify these127

as soft constraints using the Suggest construct. The force of this construct is to allow the pipeline128

to backtrack to the failing module and try again. On retrying, the LM prompt also contains its past129

attempts and suggestion messages, enabling constraint-guided self-refinement.130

When the self-refinement attempt succeeds with responses that adhere to these soft constraints, the131

corresponding input and output are composed into a high-quality demonstration for future in-context132

learning. The bootstrapped demonstration satisfies all of Aiden’s specifications, containing errors to133

avoid and detailed examples of fixing erring outputs to pass the constraints.134

In Section 6, we evaluate this pipeline on the HotPotQA [20] dataset. Enabling the developer to135

express two simple suggestions improves the retriever’s recall (by 8.0%–11.2%) and the accuracy of136

generated answers (by 2.4%–19.4%).137

4 Language Model Assertions138

We introduce LM Assertions, a novel programming construct that enables enforcing user-specified139

properties directly on LM outputs within a prompting pipeline. Drawing inspiration from the140

principles of runtime assertions in programming, LM Assertions are boolean conditions that articulate141

the desired characteristics of LM outputs, thereby bridging the deterministic world of programming142

and the probabilistic nature of language models. Below, we summarize our key design choices for143

this programming construct.144

Precise and natural to programming. Consider a general setup of a language model L that145

generates output o ∈ O based on a given input i ∈ I, where I and O denote the spaces of all146

possible inputs and outputs, respectively. An LM Assertion A is a predicate over O, such that147

A : O → {true, false}, indicating whether a given output satisfies the specified constraint:148

A(o) =

{
true if o satisfies the constraint
false otherwise

A can be arbitrary code that checks for user-specific constraints, naturally extending traditional149

assertions in programming to language models. Formulating this as a programming construct makes150

it precise, offering developers direct control over LM outputs.151

Iteration with feedback. In the traditional (static) setting described above, the LM (and overall152

pipeline) is not set up to refine its outputs. This is becoming increasingly important as we move from153

static pipelines to agentic workflows with language models. We enable this by simply extending154

assertions with retry semantics. Our key observation is that assertions, on failure, can also provide155

concrete feedback for the LM to refine its outputs via accompanying assertion messages m.156

Let o0 be the LM’s initial response on an initial input i0 (i.e., L(i0) = o0). If A(o0) = false,157

indicating that the output does not satisfy the constraint, the pipeline enters a retry state, attempting to158

4



generate a new output that adheres to A. On retry, the erroneous response o0 and the accompanying159

assertion messages m are written into the initial input i0 as i1. The assertion message and failed160

response serve as feedback to the LM to avoid outputs in O that can cause the assertion to fail. Then,161

the LM is called with new input i1 to produce L(i1) = o1. This process can be formalized as a162

sequence of attempts {o0, o1, . . . , on} until A(ok) = true or a maximum number of retries n is163

reached (k ≥ n).164

Flexibility in strictness. To make LM Assertions flexibly applicable in a wide range of domains165

and tasks, we delineate the general idea into two concrete programming constructs: hard Assertions166

Ah and soft Suggestions As. With a maximum number of allowed retries as n (could be user-defined),167

we can define Ah and As as following:168

1. Hard Assertions (Ah): Denoted by the syntax Assert, if Ah(ok) = false for all k ≤ n,169

the process is terminated, indicating a critical failure to meet a constraint.170

2. Soft Suggestions (As): Denoted by the syntax Suggest, if As(ok) = false for all k ≤ n,171

the construct logs a warning but continues, reflecting a non-critical deviation.172

Composability of assertions. Lastly, LM Assertions are composable in that a sequence of assertions173

can be applied in a user-specified order to refine the output progressively toward the desired state.174

This composability allows developers to construct complex constraint specifications by combining175

simpler assertions to enforce multifaceted requirements on LM outputs. For instance, LM Assertions176

for factuality (Afact), format adherence (Aformat), and grammatical correctness (Agram) applied177

sequentially can ensure a generated technical report meets all requirements.178

5 Assertion-Driven Optimizations179

Section 4 highlights how LM Assertions extend beyond simple guardrails but unlock new potential in180

LM prompting pipelines. Applying assertions with retry semantics to a module in an LM pipeline181

can drastically improve the performance of overall downstream tasks. This allows the application of182

assertions as constraints in an optimization problem over prompts toward a desired output, which is183

notably essential in the case of in-context learning (ICL)–a paradigm that allows language models to184

learn tasks given only a few examples through demonstrations [3]. Many studies have shown that the185

performance of ICL strongly relies on the quality of demonstrations selected [5]. We expand on the186

use case of assertions as constraints to prompt optimizers for ICL.187

5.1 Assertion-Driven Backtracking188

Both Assert and Suggest allow the pipeline to backtrack to a failing LM call and self-refine its outputs189

with the retry mechanism described in Section 4. When the pipeline contains multiple LM modules,190

LM Assertions enable backtracking to arbitrary modules that produce an undesirable response at191

any time. In the LM pipeline and agentic settings, backtracking and fixing erroneous responses of a192

single LM component enables performance optimization for subsequent downstream modules and193

the overall task objective.194

To keep the programming simple, adding LM assertions automatically instruments the LM pipeline for195

retrying and optimizations. The user interface for LM Assertion hence draws similarities to standard196

programming assertions (e.g., Python’s assert); however, during inference, the instrumented retrying197

mechanism can alter the control flow of the pipeline and perform assertion-driven backtracking. In198

Appendix A, we describe the implementation of these constructs and the instrumentation.199

5.2 Assertion-Driven Example Selection200

LM Assertions are helpful for in-context learning, particularly in selecting high-quality few-shot201

examples as demonstrations [5] to enhance performance. LM pipelines consist of several modules202

(each performing a subtask) with specialized inputs. When programming such systems for ICL tasks,203

the demonstrations must also be specialized for each sub-module to ensure optimal performance204

within each pipeline component, further optimizing the overall pipeline performance.205

5



For example, in our study on quiz generation (Section 6), the LM generating quiz choices is expected206

to produce the output in valid JSON format. To effectively perform ICL for this pipeline, an LM207

assertion A can check format validity and only select demonstrations (ik, ok) that pass the assertion208

A(ok) = true. This bootstraps a set of "valid" few-shot examples for ICL and improves the accuracy209

of the overall LM pipeline. Our experiments suggest that LM Assertions are quick and intuitive210

one-liners that substantially improve the performance of example selection for ICL, especially when211

such labels are not present within the dataset (which is generally the case for intermediate steps in a212

pipeline) or do not meet specialized requirements of domain-specific tasks.213

5.3 Assertion-driven Counterexample Bootstrapping214

An exciting and novel outcome of LM assertions for ICL is that we can go beyond collecting215

positive few-shot examples. As in Section 4, the trajectory of a language model L are input-output216

pairs {(i0, o0), (i1, o1), . . . , (ik, ok)} that define the sequence of retry attempts taken. Here, given217

A(ok) = true, all previous attempts are failures of the assertion. We thus augment the demonstration218

(ik, ok) to be a counterexample demonstration with the previous erroneous response ok−1, instructions219

on how to fix it from the assertion message, and the corrected response ok. Counterexamples are,220

therefore, negative demonstrations to avoid language models making similar mistakes. In addition, the221

demonstrations of the LM fixing assertion failures improve the LM’s ability to adhere to constraints.222

Notably, assertion-driven examples and counterexample bootstrapping show promising results for223

ICL, even without inference-time retrying. This suggests that LM Assertions can be compiled into224

useful static hints for in-context learning without incurring any runtime overhead for LM pipelines.225

6 Evaluation226

6.1 Tasks & Metrics227

We study various aspects of LM Assertions on 4 interesting variants of the popular HotPotQA [20]228

task. These tasks represent real-world use cases of LM pipelines where multiple calls to LMs and229

other retrieve models are necessary:230

T1 MultiHopQA: A complex question-answering task involving generating multi-hop search231

queries for questions and using the retrieved context to generate the correct answer.232

T2 LongFormQA: A more demanding question-answering task, where the generated answer233

must contain citations that are faithful to the retrieved context information.234

T3 TweetGen: A variant of HotPotQA, where the generated answer is expected to be a concise235

and engaging “tweet” that is also faithful to the retrieved context.236

T4 QuizGen: A task involving generating candidate answer choices for HotPotQA questions in237

a JSON format, with distractor choices and the correct answer.238

We evaluate each task with two metric categories:239

• Intrinsic Quality measures the degree to which the outputs conform to the LM Assertions240

specified within the program. This metric is a benchmark for the system’s ability to pass241

internal validation checks and user specifications.242

• Extrinsic Quality measures how LM Assertions affect downstream performance, often on243

task-specific properties we cannot assert directly without access to ground-truth labels. Here,244

assertions provide guidance that indirectly influences overall performance.245

These two metrics respectively enable us to investigate the hypotheses that LM Assertions can246

facilitate self-correction and refinement in LM pipelines (H1) and that such guided self-refinement247

can enhance the performance of downstream applications (H2). We provide a more comprehen-248

sive overview of the advanced tasks LongFormQA (Appendix B.1), QuizGen (Appendix B.2) and249

TweetGen (Appendix B.3), evaluated metrics, and applied constraints in Appendix B.250

6.2 Dataset and Models251

We utilize the HotPotQA [20] dataset for each task in the open-domain “fullwiki” setting. We then252

partition the official training set into subsets: 70% for training and 30% for validation. We only focus253

6



Assertion

Strategy
In-context
Learning Runtime

Example Bootstrapping
& Selection

Vanilla ✗ ✗ —
Compile ✓ ✗ ✗
Infer w/ Assert ✗ ✓ —
Compile w/ Assert ✓ ✗ ✓
C+Infer w/ Assert ✓ ✓ ✓

Table 1: Summary of assertion enabled strategies Section 6.3. Vanilla is the baseline pipeline with
inference only, and Compile is the baseline with naive in-context learning for few-shot prompts.
Infer w/ Assert supports assertion-driven backtracking for inference only, Compile w/ Assert
incorporates assertion-driven example selection and counterexample bootstrapping during compila-
tion. Finally, C+Infer w/ Assert contains all the assertion-driven optimizations during in-context
learning and inference.

on examples labeled as “hard” within the dataset to align with the criteria marked by the official254

validation and test sets. For training and development sets, we sample 300 examples each, and for255

testing, we sample 500 examples.256

We use the official Wikipedia 2017 “abstracts” dump of HotPotQA using a ColBERTv2 [16] retriever257

for retrieval. We test the program using OpenAI’s gpt-3.5-turbo [3] with max_tokens=500 and258

temperature=0.7 for our experimental setup.259

6.3 Strategies260

Table 1 summarizes the five strategies in which LM Assertions (particularly Suggest) can be utilized261

for each task. First, we distinguish uncompiled strategies (i.e., zero-shot), Vanilla and Infer262

w/ Assert, that predict responses directly from raw input and compiled strategies (i.e., few-shot),263

Compile, Compile w/ Assert, and, C+Infer w/ Assert, that contain demonstrations compiled by264

a prompt optimizer. Here. we use the DSPy compiler [11] and its BootstrapFewShotWithRandomSearch265

optimizer. This optimizer implements an in-context learning algorithm that bootstraps and searches266

over a training dataset to curate demonstrations for the LM pipeline optimized for a user-specified267

metric. Once this compilation of few-shot examples is completed, the optimized program is used for268

inference, leading to enhanced downstream task performance.269

Baselines include the Vanilla strategy that performs zero-shot prediction with no LM Assertions270

applied and the Compile strategy that compiles few-shot in-context learning with the naive DSPy271

optimizer. Our strategies explore when assertions are applied: solely during inference (Infer w/272

Assert) in a zero-shot setting, where assertions enable self-correction; 2) only during compilation for273

in-context learning (Compile w/ Assert), where assertions guide the selection of optimal few-shot274

optimizations; and 3) during both program compilation and inference (C+Infer w/ Assert) where275

assertions are used not only for selecting optimal few-shot demonstrations but also as a overlaying276

validation for refinement during inference and enhanced downstream performance.277

For a fair comparison, we ensure Vanilla and Compile baselines know the constraints to follow278

by adding instructions to the prompt that describe the equivalent LM Assertion. We also report279

experiments without these instructions in Appendix C, where baselines perform considerably worse.280

6.4 Results281

Our evaluation aims to answer the following hypotheses:282

H1 LM Assertions facilitate automated self-correction and refinement through assertion-driven283

backtracking for arbitrary LM pipelines by showing the LM past outputs and error messages.284

H2 Assertion-driven backtracking with LM Assertions can also enable LM pipelines to improve285

downstream application performance.286

H3 When used with compilation and prompt optimization, LM Assertions bootstrap more287

robust and effective examples/counterexamples, aiding the goal of complying more with the288

computational constraints and achieving higher downstream performance.289

7



MultiHopQA (Dev / Test)

Strategy Suggestions Passed Retrieval Recall Answer Correctness

Vanilla 66.7 / 68.2 37.3 / 37.6 45.7 / 41.0
Infer w/ Assert 87.7 / 88.4 40.3 / 40.6 46.7 / 42.0
Compile 68.7 / 67.8 42.7 / 39.4 46.3 / 39.2
Compile w/ Assert 89.3 / 85.6 45.7 / 40.2 47.3 / 39.4
C+Infer w/ Assert 96.3 / 92.2 44.0 / 43.8 51.0 / 46.8

LongFormQA (Dev / Test)

Strategy Citation Faithfulness Citation Recall Citation Precision Has Answer

Vanilla 77.0 / 75.4 52.3 / 51.8 58.1 / 57.4 67.7 / 60.4
Infer w/ Assert 84.0 / 81.4 58.0 / 57.5 64.2 / 62.1 67.3 / 60.8
Compile 79.3 / 79.6 55.7 / 52.4 66.6 / 64.1 70.7 / 55.6
Compile w/ Assert 84.0 / 83.0 42.0 / 42.3 72.6 / 73.6 67.3 / 57.8
C+Infer w/ Assert 89.0 / 87.8 44.0 / 43.5 74.8 / 73.6 66.0 / 58.0

QuizGen (Dev / Test)

Strategy Correct JSON Has Answer Plausible Distractors Validity

Vanilla 41.3 / 36.2 39.7 / 34.0 64.7 / 62.4 36.3 / 30.2
Infer w/ Assert 99.7 / 99.2 91.0 / 89.8 73.0 / 66.2 83.2 / 80.5
Compile 100.0 / 100.0 96.7 / 92.8 69.0 / 64.0 86.4 / 81.7
Compile w/ Assert 100.0 / 100.0 97.3 / 94.6 69.3 / 64.4 87.4 / 83.6
C+Infer w/ Assert 100.0 / 100.0 97.3 / 94.8 81.0 / 70.8 91.1 / 86.1

TweetGen (Dev / Test)

Strategy No "#" Has Answer Concise Engaging Faithful Quality

Vanilla 23.3 / 21.0 51.3 / 46.8 99.7 / 99.6 31.0 / 33.2 78.7 / 79.2 34.8 / 31.3
Infer w/ Assert 69.3 / 66.0 50.7 / 45.0 98.7 / 99.0 36.7 / 38.0 67.7 / 71.6 39.6 / 35.3
Compile 0.0 / 0.0 57.0 / 48.6 99.7 / 100.0 31.3 / 34.4 75.7 / 77.4 35.8 / 31.4
Compile w/ Assert 77.3 / 76.0 55.0 / 47.8 98.7 / 98.4 66.7 / 69.8 74.7 / 73.8 47.1 / 40.1
C+Infer w/ Assert 97.3 / 98.0 58.3 / 49.0 99.0 / 98.2 84.3 / 82.2 74.7 / 75.6 54.1 / 44.9

Figure 2: Evaluation of each task on the validation set (Dev) and the test set (Test). Tasks are
described in Section 6.1, and LM pipeline configuration are described in Table 1. For each task, we
use the same LM pipeline program except for the LM Assertions. Extrinsic metrics (downstream
application performance) are highlighted in grey. For each metric, higher is always better. The highest
value in each column is in bold.

6.4.1 H1: Self-Correction via LM Assertions290

To study this hypothesis, we mainly look at the intrinsic metrics of the tasks, i.e., metrics that check if291

the LM pipeline conforms to the constraints of the LM assertions introduced. In Figure 2, we observe292

that LM Assertions consistently provide gains for all tasks when comparing the Vanilla and Infer293

w/ Assert strategies. That is, in a zero-shot setting, introducing our self-refinement-based LM294

assertions substantially improves the pipeline’s ability to conform to specs, e.g. in the MultiHopQA295

task (Figure 1), the number of Suggestions Passed increases by 29.6% for the test set.296

The increase is more prominent in the QuizGen task, where the LM pipeline must generate a multiple-297

choice quiz question in JSON format. Without LM Assertions, the model pipeline struggles to generate298

quizzes in valid JSON (Correct JSON). However, after including constraints that the response should299

be in JSON and include the correct answer as one of the choices, together with backtracking and300

self-refinement to fix these constraints, the final answers have correct formatting 99.2% of the time301

and have the right answer 89.8% of the time.302

6.4.2 H2: Performance via Self-Correction303

Next, we focus on whether defining suggestions in the program can help achieve better down-304

stream performance by comparing Infer w/ Assert with Vanilla. We observe that on most305

tasks–MultiHopQA, LongFormQA, and QuizGen–we get a moderate to large improvement on ex-306

trinsic/downstream metrics ( grey columns) when suggestions are defined. Notably, in QuizGen, the307

quiz’s overall Validity generated increases from 30.2%308

8



However, on tasks like TweetGen, we do not see a significant increase in the overall Quality of309

the generated tweet on the test set. We believe this is a case of “conflicting suggestions”, where310

sequentially defined suggestions can override each other’s impact if they are hard to disentangle311

during self-refinement. We observe similar behavior in a few experiments in the compiled strategies312

of Compile w/ Assert and C+Infer w/ Assert and display a few examples in Appendix D.313

6.4.3 H3: Compiling with LM Assertions314

Then, we explore an exciting use case of LM Assertions to serve as the filter and optimizer for few-315

shot demonstrations in prompt optimization. We evaluate all four tasks on three settings: the baseline316

Compile, where the program utilizes a DSPy optimizer to bootstrap few-shot examples and perform317

in-context learning with selected examples; Compile w/ Assert, where we enable suggestions318

in the bootstrapping and example selection process only; and finally, C+Infer w/ Assert, where319

suggestions and self-refinement are enabled in both in-context learning phase and the compiled320

program during inference.321

By comparing Compile with Compile w/ Assert, we find that constructing few-shot examples322

that adhere to LM Assertions and show the self-refinement traces in the demonstrations makes the323

LM pipeline more likely to adhere to the same guidelines, even without runtime self-correction and324

backtracking. For example, in the TweetGen experiment, the strategy compiled with suggestions325

has 69.8% Engaging tweets, while the baseline few-shot strategy only generates 34.4%. Overall,326

compiling with suggestions helps tweet generation gain 43.0% more overall Quality. For other tasks,327

too, compiling with assertions almost always shows stronger performance in intrinsic and extrinsic328

metrics.329

A surprising finding for TweetGen is the decrease in engagement (Engaging) when compiling with330

assertions. We inspect the responses of Compile w/ Assert and find that the tweets are short, thus331

less engaging. We suspect the following reasons: first, the user-provided instruction to fix this332

suggestion may not be precise enough for an LLM to follow. Second, as we mentioned in the analysis333

for H2, some LM Assertions might conflict with each other, making discrete optimization of prompts334

challenging to satisfy all constraints.335

Finally, we put everything together and build C+Infer w/ Assert where suggestions are enabled336

at all times. This setting performs best for most intrinsic metrics over all other strategies due to the337

high-quality few-shot examples collected and runtime self-refinement. In the MultiHopQA question338

answering task, the compiled module with suggestions produces 14.2% more correct answers than339

the zero-shot baseline. In QuizGen, the zero-shot baseline only generates 30.2% valid quiz questions,340

while the final compiled program is valid 86.1% of the time. Similarly, in TweetGen, we see a 43.45%341

increase in quality tweets. In LongFormQA cited long passage question answering, although all the342

suggestions are more likely to pass, the answer inclusion (Has Answer) metric slightly dropped; this343

suggests the opportunities to find better LM Assertions for this program that can potentially influence344

the downstream tasks.345

7 Conclusion346

We introduced LM Assertions, a construct to express arbitrary computational constraints on the behav-347

ior of LMs. LM Assertions provide a new way to program LM pipelines that subsume self-refinement,348

backtracking, and constraint-aware optimization with a single intuitive programming construct. We349

discuss several optimizations and directions LM Assertions unlock for in-context learning to achieve350

high performance on complex pipelined tasks. Our evaluations show substantial gains on four case351

studies, reporting both intrinsic (i.e., assertion-specific) and extrinsic (i.e., downstream) task metrics.352

Overall, we hope to open avenues for programming more reliable applications of language models353

with intuitive constructs such as assertions.354

9



References355

[1] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass - java with assertions. In356

K. Havelund and G. Rosu, editors, Workshop on Runtime Verification, RV 2001, in connection357

with CAV 2001, Paris, France, July 23, 2001, volume 55 of Electronic Notes in Theoretical358

Computer Science, pages 103–117. Elsevier, 2001.359

[2] L. Beurer-Kellner, M. Fischer, and M. Vechev. Prompting is programming: A query language for360

large language models. Proceedings of the ACM on Programming Languages, 7(PLDI):1946–361

1969, 2023.362

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,363

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural364

information processing systems, 33:1877–1901, 2020.365

[4] H. Chase. LangChain, Oct. 2022.366

[5] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, and Z. Sui. A survey on367

in-context learning. arXiv preprint arXiv:2301.00234, 2022.368

[6] K. D’Oosterlinck, O. Khattab, F. Remy, T. Demeester, C. Develder, and C. Potts. In-context369

learning for extreme multi-label classification. arXiv preprint arXiv:2401.12178, 2024.370

[7] C. Hokamp and Q. Liu. Lexically constrained decoding for sequence generation using grid371

beam search. arXiv preprint arXiv:1704.07138, 2017.372

[8] J. E. Hu, H. Khayrallah, R. Culkin, P. Xia, T. Chen, M. Post, and B. Van Durme. Improved373

lexically constrained decoding for translation and monolingual rewriting. In Proceedings of374

the 2019 Conference of the North American Chapter of the Association for Computational375

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 839–850,376

2019.377

[9] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia. Model assertions for monitoring and improving378

ml models. Proceedings of Machine Learning and Systems, 2:481–496, 2020.379

[10] O. Khattab, K. Santhanam, X. L. Li, D. Hall, P. Liang, C. Potts, and M. Zaharia. Demonstrate-380

search-predict: Composing retrieval and language models for knowledge-intensive nlp, 2022.381

[11] O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam, S. Vardhamanan, S. Haq,382

A. Sharma, T. T. Joshi, H. Moazam, H. Miller, M. Zaharia, and C. Potts. Dspy: Compiling383

declarative language model calls into self-improving pipelines. ICLR, 2024.384

[12] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri,385

S. Prabhumoye, Y. Yang, et al. Self-refine: Iterative refinement with self-feedback. arXiv386

preprint arXiv:2303.17651, 2023.387

[13] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in Computer Science,388

Volume 9, Issue 4, Dec. 2013.389

[14] Python Software Foundation. 7. simple statements. https://docs.python.org/3/reference/390

simple_stmts.html#the-assert-statement, 2023. Accessed: 2023-12-01.391

[15] T. Rebedea, R. Dinu, M. Sreedhar, C. Parisien, and J. Cohen. Nemo guardrails: A toolkit for392

controllable and safe llm applications with programmable rails, 2023.393

[16] K. Santhanam, O. Khattab, J. Saad-Falcon, C. Potts, and M. Zaharia. Colbertv2: Effective and394

efficient retrieval via lightweight late interaction. arXiv preprint arXiv:2112.01488, 2021.395

[17] Y. Shao, Y. Jiang, T. A. Kanell, P. Xu, O. Khattab, and M. S. Lam. Assisting in writing396

wikipedia-like articles from scratch with large language models, 2024.397

[18] N. Shinn, F. Cassano, A. Gopinath, K. R. Narasimhan, and S. Yao. Reflexion: Language398

agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural Information399

Processing Systems, 2023.400

10

https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement


[19] G. L. Steele. Rabbit: A compiler for scheme. Technical report, USA, 1978.401

[20] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning.402

Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv preprint403

arXiv:1809.09600, 2018.404

[21] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:405

Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601,406

2023.407

[22] M. Zaharia, O. Khattab, L. Chen, J. Q. Davis, H. Miller, C. Potts, J. Zou, M. Carbin, J. Frankle,408

N. Rao, and A. Ghodsi. The shift from models to compound ai systems. https://bair.409

berkeley.edu/blog/2024/02/18/compound-ai-systems/, 2024.410

[23] L. Zheng, L. Yin, Z. Xie, J. Huang, C. Sun, C. H. Yu, S. Cao, C. Kozyrakis, I. Stoica, J. E.411

Gonzalez, C. Barrett, and Y. Sheng. Efficiently programming large language models using412

sglang, 2023.413

11

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/


A Implementation414

We introduce the proposed LM Assertions as plug-in interfaces in the DSPy framework according415

to the semantics in Section 4. Next, we describe details about the design of our APIs and how we416

implement the semantics of both Assert and Suggest in DSPy.417

A.1 API Design418

419
dspy.Assert(constraint: bool, msg: Optional[str], backtrack: Optional[module])420

421

dspy.Suggest(constraint: bool, msg: Optional[str], backtrack: Optional[module])422423

We inherit a simple API design for LM Assertions. Both suggestions and assertions take a boolean424

value constraint as input. Note that the computation for constraint can invoke other DSPy modules,425

potentially calling the LM to inform the result for the constraint. Then, the user provides an optional426

error message, which is used for error logging and feedback construction for backtracking and427

refinement. Finally, to enable backtracking, both dspy.Assert and dspy.Suggest contains an optional428

backtrack argument, which points to the target module to backtrack to if the constraints fail.429

A.2 Error Handlers430

To implement various strategies of both assertions and suggestions for different use cases, we exploit431

Python’s native error and exception handling.432

We encode error-handling logic as function wrappers. To that extent, we provide a primitive433

constraint_tranform to wrap any DSPy module with handlers. When the constraints in dspy.Assert434

and dspy.Suggest are false, they raise AssertionError and SuggestionError, respectively. Then,435

the dedicated error handling clause in the function wrapper can reroute the errors to the correct436

semantics.437

As a result, the program’s behavior after an assertion or suggestion error is completely controlled by438

the handlers used. To support flexibility in using LM Assertions with DSPy, we implement several439

composable handlers, such as disabling suggestions and assertions, suppressing assertion errors with440

logging, etc.441

The default handlers follow the semantics as described in Section 4 to enable self-refinement. That is,442

we allow R retry attempts for AssertionError and SuggestionError by backtracking to the failing443

LM. After R retry attempts, an AssertionError will be raised while SuggestionError will only be444

logged silently.445

A.3 Backtracking446

To implement backtracking in DSPy, we introduce a new auxiliary meta-module called Retry. This447

module is a lightweight wrapper for any DSPy module, providing additional information about all448

previously unsuccessful predictions. When DSPy determines the need to backtrack to a specific449

module, it calls Retry. As shown in Figure 1, the Retry module automatically adds the failed450

predictions and the corresponding user-defined error messages raised to the prompt. Then, the451

LM pipeline can backtrack to the previously failed module with this updated prompt. In this452

way, the original module to refine is self-aware and informed of past attempts and errors on them.453

Consequently, this empowers the LM to develop more informed and error-avoiding generations in454

subsequent iterations of self-refinement.455

B Case Studies456

B.1 LongFormQA457

B.1.1 Task458

In this task, we build on the Multi-Hop QA (Figure 1) task by expecting long-form answers to459

questions that include citations to referenced context.460

12



class LongFormQAWithAssertions(dspy.Module):
def __init__(self, passages_per_hop=3):
self.retrieve = dspy.Retrieve(k=passages_per_hop)
self.generate_query = dspy.ChainOfThought("context, question -> query")
self.generate_cited_paragraph = dspy.ChainOfThought("context, question -> paragraph") #has
field description to include citations

def forward(self, question):
context = []

for hop in range(2):
query = self.generate_query(context=context, question=question).query
context += self.retrieve(query).passages

pred = self.generate_cited_paragraph(context=context, question=question)
dspy.Suggest(citations_check(pred.paragraph), "Every 1-2 sentences should have citations:
’text... [x].’")

for line, citation in get_lines_and_citations(pred, context):
dspy.Suggest(is_faithful(line, citation), f"Your output should be based on the context:

’{citations}’.")

return pred

Figure 3: DSPy program with LM Assertions for long-form paragraph multi-hop question answering
task with a retriever. We introduce two suggestions: (1) asserting every 1-2 sentences has a citation;
(2) every text segment preceding a citation is faithful to its cited reference.

Figure 3 shows an implementation of this task in DSPy. As shown, it is nearly identical to Figure 1461

outside of the introduction of a new dspy.ChainOfThought module that generates cited paragraphs462

referencing the retrieved context. With this task and LM pipeline, we aim not just to produce accurate463

answers but to generate well-structured long-form answers that are faithful to the retrieved context.464

B.1.2 Metrics465

We assess intrinsic performance using a sophisticated metric, Citation Faithfulness. In this metric, a466

small DSPy program uses the LM to check if the text preceding each citation appropriately supports467

the cited context. Our check outputs a boolean for faithfulness, which is then averaged across the468

citations in the output to aggregate a metric for evaluation. As extrinsic metrics, we use: (1) Answer469

Correctness, verifying if the gold answer is correctly incorporated; (2) Citation Precision, gauging470

the proportion of correctly cited titles; and (3) Citation Recall, measuring the coverage of gold titles471

cited.472

B.1.3 Constraints Specified473

As a simple initial check, we include a Suggest statement that requires every 1–2 of sentences gener-474

ated has citations in an intended format. This is checked by a simple Python function citations_check.475

As a more sophisticated check, we Suggest that the text preceding any citation must be faithful476

to the cited context, ensuring that the reference text accurately represents the content of the cited477

information. Since this is a fuzzy condition, we employ a small DSPy program (one that uses the478

LM) to perform this check. Notably, the robust API design of Suggest allows the user to specify479

arbitrary expressions as conditional checks, such as an LM call. The goal of this Suggest statement480

is to ensure that all sentences are appropriately attributed to correct supporting sources.481

B.2 QuizGen482

B.2.1 Task483

We introduce a new task stemming from the HotPotQA dataset in turning questions from the dataset484

into quiz questions by generating possible answer choices for the question in a JSON format.485

13



class QuizChoiceGenerationWithAssertions(dspy.Module):
def __init__(self):

super().__init__()
self.generate_choices = dspy.ChainOfThought("question, correct_answer,

number_of_choices -> answer_choices") #has specified instruction to guide inputs ->
outputs

def forward(self, question, answer):
choice_string = self.generate_choices(question=question, correct_answer=answer,

number_of_choices=number_of_choices).answer_choices

dspy.Suggest(format_checker(choice_string), "The format of the answer choices should
be in JSON format. Please revise accordingly.")

dspy.Suggest(is_correct_answer_included(answer, choice_string), "The answer choices do
not include the correct answer to the question. Please revise accordingly.")

plausibility_question = "Are the distractors in the answer choices plausible and not
easily identifiable as incorrect?"

plausibility_assessment = dspy.Predict("question, answer_choices, assessment_question
-> assessment_answer")(question=question, answer_choices=choice_string,
assessment_question=plausibility_question)

dspy.Suggest(is_plausibility_yes(plausibility_assessment.assessment_answer), "The
answer choices are not plausible distractors or are too easily identifiable as incorrect.
Please revise to provide more challenging and plausible distractors.")

return dspy.Prediction(choices = choice_string)

Figure 4: DSPy program with LM Assertions for quiz question choice generation. We introduce
3 suggestions: (1) asserting JSON format; (2) correct answer is included; (3) plausible distractor
choices are present.

This task is represented by a very simple program in DSPy with a dspy.ChainOfThought module that486

generates a set of answer choices based on a defined question-answer pair and a specified number of487

choices. To ensure well-defined quiz questions, we aim for this task to adhere to consistent formatting488

and offer a set of plausible distractor answer choices alongside the actual correct answer to the489

question.490

B.2.2 Metrics491

We assess the task’s intrinsic performance across the following metrics: (1) Valid Formatting; (2)492

Correct Answer Inclusion; and (3) Choices’ Plausibility.493

We verify consistent formatting by parsing the generated answer choices and checking their consis-494

tency to maintain JSON formatting of key-value pairs.495

We similarly ensure that the outputted answer choices include the correct answer corresponding to496

the respective question from the HotPotQA dataset.497

For determining the plausibility of the distractor choices, we build a DSPy program that relies on498

the LM to assess the quality of the answer choice questions. This relies on the inputs: question,499

generated answer choices, and the assessment question we provide: Are the distractors in the answer500

choices plausible and not easily identifiable as incorrect? This plausibility verification then outputs501

an assessment answer of whether the distractors are plausible or not.502

For the extrinsic metric, we define a composite scoring metric that considers the intrinsic metrics503

above. The metric imposes that the conditions of valid formatting and correct answer inclusion are504

met, thereby ensuring valid quiz questions. When this case is met for the generated answer choices,505

14



we return an average score over all three of the intrinsic metrics. If either of these conditions is not506

met, the score defaults to 0.507

B.2.3 Constraints Specified508

For the simple check of Valid Formatting, we include a Suggest statement that requires the format of509

the answer choices to be in JSON format. This is checked by a simple Python function format_checker.510

Similarly, we verify Correct Answer Inclusion with the Suggest statement that indicates if the511

answer choices do not include the correct answer. This is checked by a simple Python function512

is_correct_answer_included.513

To verify the plausibility of the answer choices to reflect strong distractor choices alongside the514

correct choice, we employ the Suggest statement to indicate if the answer choices are not plausible515

distractors or are too easily identifiable as incorrect. With a DSPy program in place to assess the516

choices, this Suggest statement ensures that all of the answer choices are plausible distractors.517

B.3 TweetGen518

B.3.1 Task519

We introduce another new task derived from the HotPotQA dataset in generating tweets to answer520

questions.521

This task mirrors the MultiHopQA task with the addition of a dspy.ChainOfThought module layer to522

utilize the retrieved context and corresponding question to generate a tweet that effectively answers523

the question. We aim for the task to ensure the tweet not only answers the question but is engaging to524

the reader and faithful to its relevant context.525

B.3.2 Metrics526

We assess the task’s intrinsic performance across various metrics: (1) No Hashtags; (2) Correct527

Answer Inclusion; (3) Within Length; (4) Engaging; (5) Faithful.528

We impose an intrinsic constraint to ensure none of the tweets have hashtags, ensuring all tweets529

maintain a consistent tweeting style.530

As we do with QuizChoiceGeneration, we ensure the outputted tweet includes the correct answer531

corresponding to the respective question from the HotPotQA dataset.532

We also ensure that the generated tweet adheres to a character count limit of 280 characters to model533

sample tweet behavior.534

For determining the engagement of the tweet, we build a DSPy program that relies on the LM to535

assess this. This relies on the inputs: question, context, generated tweet, and the assessment question536

we provide: Does the assessed text make for a self-contained, engaging tweet? This verification537

outputs its assessment of whether the tweet is engaging in relation to its corresponding question and538

retrieved context.539

We perform a similar assessment for the tweet’s faithfulness, with the simple modification to the540

assessment question: Is the assessed text grounded in the context?541

For the extrinsic metric, we define a composite scoring metric that considers all of the intrinsic542

metrics above. The metric imposes that the most relevant intrinsic conditions of a well-formed tweet543

are met, particularly if the tweet contains the correct answer to the question and is within the tweeting544

character limit. When this case is met for the generated answer choices, we return an average score545

over all five of the intrinsic metrics. If either of these conditions is not met, the score defaults to 0.546

B.3.3 Constraints Specified547

To verify that the tweet contains no hashtags, we include a Suggest statement that requires the tweet548

to be generated without any hashtag phrases. This is checked by a simple Python function through549

regex checks in has_no_hashtags.550

15



class TweetGenerationWithAssertions(dspy.Module):
def __init__(self):

super().__init__()
self.generate_tweet = dspy.ChainOfThought("question, context -> tweet") #has specified

instruction to guide inputs -> outputs

def forward(self, question, answer):
context = []
generate_query = [dspy.ChainOfThought("context, question -> query") for _ in range(2)]
retrieve = dspy.Retrieve(k=3)
for hop in range(2):

query = generate_query[hop](context=context, question=question).query
passages = retrieve(query).passages
context = deduplicate(context + passages)

generated_tweet = self.generate_tweet(question=question, context=context).tweet
dspy.Suggest(has_no_hashtags(generated_tweet), f"Please revise the tweet to remove

hashtag phrases following it.")
dspy.Suggest(is_within_length_limit(generated_tweet, 280), f"Please ensure the tweet

is within {280} characters.")
dspy.Suggest(has_correct_answer(generated_tweet, answer), "The tweet does not include

the correct answer to the question. Please revise accordingly.")
engaging_question = "Does the assessed text make for a self-contained, engaging tweet?

Say no if it is not engaging."
engaging_assessment = dspy.Predict("context, assessed_text, assessment_question ->

assessment_answer")(context=context, assessed_text=generated_tweet, assessment_question=
engaging_question)

dspy.Suggest(is_assessment_yes(engaging_assessment.assessment_answer), "The text is
not engaging enough. Please revise to make it more captivating.")

faithful_question = "Is the assessed text grounded in the context? Say no if it
includes significant facts not in the context."

faithful_assessment = dspy.Predict("context, assessed_text, assessment_question ->
assessment_answer")(context=’N/A’, assessed_text=generated_tweet, assessment_question=
faithful_question)

dspy.Suggest(is_assessment_yes(faithful_assessment.assessment_answer), "The text
contains unfaithful elements or significant facts not in the context. Please revise for
accuracy.")

return dspy.Prediction(generated_tweet=generated_tweet, context=context)

Figure 5: DSPy program with LM Assertions for tweet generation. We introduce 5 suggestions: (1)
asserting no hashtags; (2) correct answer is included; (3) tweet is within character limit; (4) tweet is
engaging; (5) tweet is faithful to context.

To verify the generated tweet adheres to the character limits, we impose this through the Suggest551

statement to ensure that the tweet is under the specified character limit, which we specify as 280 in552

our experiments. This is checked by a simple Python function is_within_length_limit.553

Similarly, we verify Correct Answer Inclusion with the Suggest statement that indicates if the554

answer choices do not include the correct answer. This is checked by a simple Python function555

has_correct_answer.556

To verify the engagement level of the generated tweet, we employ the Suggest statement to simply557

indicate whether the tweet is engaging enough as determined by the LM and DSPy program in place558

to assess engagement.559

We conduct a similar approach for faithfulness as well, checking for the tweet’s faithfulness to its560

retrieved context.561

C Impact on Using Different LLM Instructions562

We explore comparative tests in the specified instructions for the case studies mentioned above. We563

differentiate between a primitive instruction that aims to simply specify a task’s objective and a564

16



TweetGen w/ Primitive Instructions (Dev/Test)

Strategy No "#" Has Answer Concise Engaging Faithful Quality

Vanilla 3.3 / 3.0 53.7 / 48.2 96.3 / 97.0 35.7 / 36.4 80.0 / 81.2 33.7 / 30.4
Infer w/ Assert 49.3 / 49.6 50.3 / 41.8 92.0 / 92.4 45.3 / 41.0 72.3 / 74.0 34.3 / 27.8
Compile 0.0 / 0.2 55.7 / 46.2 100 / 99.6 47.3 / 46.6 78.3 / 76.8 36.7 / 30.8
Compile w/ Assert 98.7 / 97.4 55.0 / 45.8 99.3 / 99.0 1.3 / 2.6 65.3 / 70.0 40.4 / 34.3
C+Infer w/ Assert 41.3 / 41.0 55.7 / 48.2 94.7 / 93.8 54.3 / 60.2 76.7 / 81.2 40.3 / 35.0

QuizGen w/ Primitive Instructions (Dev/Test)

Strategy Correct JSON Has Answer Citation Precision Validity

Vanilla 1.3 / 2.8 1.3 / 2.6 61.3 / 61.8 1.2 / 2.3
Infer w/ Assert 91.7 / 93.4 73.3 / 72.6 75.0 / 69.8 69.8 / 68.0
Compile 100 / 100 94.3 / 89.8 72.7 / 67.4 85.4 / 80.1
Compile w/ Assert 100 / 100 95.7 / 91.4 63.0 / 57.0 83.7 / 78.5
C+Infer w/ Assert 100 / 100 93.3 / 89.4 73.7 / 67.8 85.8 / 81.1

Figure 6: Evaluation of TweetGen and QuizGen task using the primitive instruction. The LM pipeline
configuration are described in Table 1. For each task, we use the same LM pipeline program except
for the LM Assertions. Extrinsic metrics (downstream application performance) are highlighted in
grey. For each metric, higher is always better. The highest value in each column is bold.

complete instruction that accounts for the respective intrinsic and extrinsic metric measured for the565

task. These tests are conducted specifically on the TweetGen and QuizGen tasks which encompass566

more complex metrics. Our experiments on the complete instructions are presented in Figure 2 while567

we demonstrate our results on the primitive instructions below.568

C.1 TweetGen569

Primitive instruction: "Generate a tweet that effectively answers a question."570

Complete instruction with metrics accounted for: "Generate an engaging tweet that effectively571

answers a question staying faithful to the context, is less than 280 characters, and has no hashtags."572

C.2 QuizGen573

Primitive instruction: "Generate answer choices for the specified question."574

Complete instruction with metrics accounted for: "Generate answer choices in JSON format that575

include the correct answer and plausible distractors for the specified question."576

C.3 Discussion577

Based on these experiments on primitive instructions, we discovered that when the baseline pipeline578

only has access to high-level and generic instructions, it is almost impossible for the pipeline to follow579

the underlying constraints. For example, in QuizGen, the baseline Vanilla strategy only generates580

2.8% of quizzes with Correct JSON format and 2.6% of quizzes that contains the correct answer.581

However, for our assertion-driven optimization enabled pipelines, the performance on primitive582

experiments are still comparable to the counter-part with complex instructions. This indicates583

that model pipelines with LM Assertions and assertion-driven optimizations are less sensitive to584

instructions, requiring less effort on manual prompt tuning.585

D Interesting Examples of Correlated Constraints586

This section showcases selected examples that demonstrate potential conflicts between Assertions587

specified in the TweetGen task. Each set of examples highlights instances of two configurations that588

17



produce outputs to achieve success on the TweetGen Metrics (Appendix B.3.2) and face the nuanced589

challenge of balancing these constraints in execution.590

Example 1 Both results accurately include the correct answer. However, Compile w/ Assert does591

not pass the Engaging constraint despite the specified assertion but ensures the No "#" constraint592

is met whereas C+Infer w/ Assert violates the No "#" constraint while satisfying the Engaging593

constraint.594

Question: What was the name of the treaty that made Hungary a landlocked state which
contained the Kolozsvar Ghetto?

Compile w/ Assert: The Treaty of Trianon made Hungary landlocked
and led to the existence of the Kolozsvar Ghetto. This lesser-known
ghetto was located in Kolozsvár, Kingdom of Hungary (now Cluj-Napoca,
Romania).
C+Infer w/ Assert: The Treaty of Trianon, signed in 1920, reshaped
Hungaryś destiny, leading to its landlocked status and the emergence of
the Kolozsvar Ghetto. Uncover the gripping tale of this pivotal moment in
history and its lasting effects. #HistoryUnveiled

Answer: Treaty of Trianon
595

Example 2 Both results do not include the correct answer. However, both configurations produce596

engaging outputs. Yet C+Infer w/ Assert does not conform to the No "#" constraint while Compile597

w/ Assert does.598

Question: Which American car rental company is also a member of the Association of Car
Rental Industry Sytems Standards?

Compile w/ Assert: "Enterprise, a leading American car rental company,
is also a proud member of the Association of Car Rental Industry Systems
Standards. Rent with confidence and enjoy a seamless experience with
Enterprise!"
C+Infer w/ Assert: "Looking for a car rental company that meets indus-
try standards? Look no further than ACRISS member Enterprise! With
their commitment to excellence, you can trust them for a seamless rental
experience. Get ready for a smooth ride! #CarRental #Enterprise"

Answer: Budget Rent a Car
599

18



NeurIPS Paper Checklist600

1. Claims601

Question: Do the main claims made in the abstract and introduction accurately reflect the602

paper’s contributions and scope?603

Answer: [Yes]604

Justification: All the numbers and claims in the abstract and introduction are directly based605

on the evaluation section.606

Guidelines:607

• The answer NA means that the abstract and introduction do not include the claims608

made in the paper.609

• The abstract and/or introduction should clearly state the claims made, including the610

contributions made in the paper and important assumptions and limitations. A No or611

NA answer to this question will not be perceived well by the reviewers.612

• The claims made should match theoretical and experimental results, and reflect how613

much the results can be expected to generalize to other settings.614

• It is fine to include aspirational goals as motivation as long as it is clear that these goals615

are not attained by the paper.616

2. Limitations617

Question: Does the paper discuss the limitations of the work performed by the authors?618

Answer: [Yes]619

Justification: At the end of the evaluation section, we discuss a failure mode for assertions620

where the user-provided assertions conflict with each other, resulting in suboptimal perfor-621

mance. We provide detailed examples in the appendix, and highlight how such limitations622

can be avoided by designing more robust LM assertions (while acknowledging this is a623

challenging task).624

Guidelines:625

• The answer NA means that the paper has no limitation while the answer No means that626

the paper has limitations, but those are not discussed in the paper.627

• The authors are encouraged to create a separate "Limitations" section in their paper.628

• The paper should point out any strong assumptions and how robust the results are to629

violations of these assumptions (e.g., independence assumptions, noiseless settings,630

model well-specification, asymptotic approximations only holding locally). The authors631

should reflect on how these assumptions might be violated in practice and what the632

implications would be.633

• The authors should reflect on the scope of the claims made, e.g., if the approach was634

only tested on a few datasets or with a few runs. In general, empirical results often635

depend on implicit assumptions, which should be articulated.636

• The authors should reflect on the factors that influence the performance of the approach.637

For example, a facial recognition algorithm may perform poorly when image resolution638

is low or images are taken in low lighting. Or a speech-to-text system might not be639

used reliably to provide closed captions for online lectures because it fails to handle640

technical jargon.641

• The authors should discuss the computational efficiency of the proposed algorithms642

and how they scale with dataset size.643

• If applicable, the authors should discuss possible limitations of their approach to644

address problems of privacy and fairness.645

• While the authors might fear that complete honesty about limitations might be used by646

reviewers as grounds for rejection, a worse outcome might be that reviewers discover647

limitations that aren’t acknowledged in the paper. The authors should use their best648

judgment and recognize that individual actions in favor of transparency play an impor-649

tant role in developing norms that preserve the integrity of the community. Reviewers650

will be specifically instructed to not penalize honesty concerning limitations.651

3. Theory Assumptions and Proofs652

19



Question: For each theoretical result, does the paper provide the full set of assumptions and653

a complete (and correct) proof?654

Answer: [NA]655

Justification: We do not make any theoretical conclusion and rely on empirical results to656

validate our claims.657

Guidelines:658

• The answer NA means that the paper does not include theoretical results.659

• All the theorems, formulas, and proofs in the paper should be numbered and cross-660

referenced.661

• All assumptions should be clearly stated or referenced in the statement of any theorems.662

• The proofs can either appear in the main paper or the supplemental material, but if663

they appear in the supplemental material, the authors are encouraged to provide a short664

proof sketch to provide intuition.665

• Inversely, any informal proof provided in the core of the paper should be complemented666

by formal proofs provided in appendix or supplemental material.667

• Theorems and Lemmas that the proof relies upon should be properly referenced.668

4. Experimental Result Reproducibility669

Question: Does the paper fully disclose all the information needed to reproduce the main ex-670

perimental results of the paper to the extent that it affects the main claims and/or conclusions671

of the paper (regardless of whether the code and data are provided or not)?672

Answer: [Yes]673

Justification: We provide clear semantics about LM Assertions and assertion-driven opti-674

mizations in addition to the majority part of the experiment code (in appendix). Our code,675

data, and experiment notebooks will be made public for the camera-ready paper if accepted.676

Guidelines:677

• The answer NA means that the paper does not include experiments.678

• If the paper includes experiments, a No answer to this question will not be perceived679

well by the reviewers: Making the paper reproducible is important, regardless of680

whether the code and data are provided or not.681

• If the contribution is a dataset and/or model, the authors should describe the steps taken682

to make their results reproducible or verifiable.683

• Depending on the contribution, reproducibility can be accomplished in various ways.684

For example, if the contribution is a novel architecture, describing the architecture fully685

might suffice, or if the contribution is a specific model and empirical evaluation, it may686

be necessary to either make it possible for others to replicate the model with the same687

dataset, or provide access to the model. In general. releasing code and data is often688

one good way to accomplish this, but reproducibility can also be provided via detailed689

instructions for how to replicate the results, access to a hosted model (e.g., in the case690

of a large language model), releasing of a model checkpoint, or other means that are691

appropriate to the research performed.692

• While NeurIPS does not require releasing code, the conference does require all submis-693

sions to provide some reasonable avenue for reproducibility, which may depend on the694

nature of the contribution. For example695

(a) If the contribution is primarily a new algorithm, the paper should make it clear how696

to reproduce that algorithm.697

(b) If the contribution is primarily a new model architecture, the paper should describe698

the architecture clearly and fully.699

(c) If the contribution is a new model (e.g., a large language model), then there should700

either be a way to access this model for reproducing the results or a way to reproduce701

the model (e.g., with an open-source dataset or instructions for how to construct702

the dataset).703

(d) We recognize that reproducibility may be tricky in some cases, in which case704

authors are welcome to describe the particular way they provide for reproducibility.705

In the case of closed-source models, it may be that access to the model is limited in706

20



some way (e.g., to registered users), but it should be possible for other researchers707

to have some path to reproducing or verifying the results.708

5. Open access to data and code709

Question: Does the paper provide open access to the data and code, with sufficient instruc-710

tions to faithfully reproduce the main experimental results, as described in supplemental711

material?712

Answer: [No]713

Justification: We open-sourced our code and experiment but did not link them due to714

anonymity. Our code, experiments, and links (beyond what is included in this paper) will be715

made public for the camera-ready paper if accepted. The data used is open-sourced online.716

Guidelines:717

• The answer NA means that paper does not include experiments requiring code.718

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/719

public/guides/CodeSubmissionPolicy) for more details.720

• While we encourage the release of code and data, we understand that this might not be721

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not722

including code, unless this is central to the contribution (e.g., for a new open-source723

benchmark).724

• The instructions should contain the exact command and environment needed to run to725

reproduce the results. See the NeurIPS code and data submission guidelines (https:726

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.727

• The authors should provide instructions on data access and preparation, including how728

to access the raw data, preprocessed data, intermediate data, and generated data, etc.729

• The authors should provide scripts to reproduce all experimental results for the new730

proposed method and baselines. If only a subset of experiments are reproducible, they731

should state which ones are omitted from the script and why.732

• At submission time, to preserve anonymity, the authors should release anonymized733

versions (if applicable).734

• Providing as much information as possible in supplemental material (appended to the735

paper) is recommended, but including URLs to data and code is permitted.736

6. Experimental Setting/Details737

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-738

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the739

results?740

Answer: [Yes]741

Justification: We report the key settings of the experiment in Section 6.2. Additional details742

can be found in the code and instructions that will be made public for the camera-ready743

paper if accepted.744

Guidelines:745

• The answer NA means that the paper does not include experiments.746

• The experimental setting should be presented in the core of the paper to a level of detail747

that is necessary to appreciate the results and make sense of them.748

• The full details can be provided either with the code, in appendix, or as supplemental749

material.750

7. Experiment Statistical Significance751

Question: Does the paper report error bars suitably and correctly defined or other appropriate752

information about the statistical significance of the experiments?753

Answer: [No]754

Justification: Experimental results involve the evaluation of LLM outputs which does not755

require traditional statistical error reporting given the nature of the benchmark tasks and756

deterministic behavior.757

Guidelines:758

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.759

• The authors should answer "Yes" if the results are accompanied by error bars, confi-760

dence intervals, or statistical significance tests, at least for the experiments that support761

the main claims of the paper.762

• The factors of variability that the error bars are capturing should be clearly stated (for763

example, train/test split, initialization, random drawing of some parameter, or overall764

run with given experimental conditions).765

• The method for calculating the error bars should be explained (closed form formula,766

call to a library function, bootstrap, etc.)767

• The assumptions made should be given (e.g., Normally distributed errors).768

• It should be clear whether the error bar is the standard deviation or the standard error769

of the mean.770

• It is OK to report 1-sigma error bars, but one should state it. The authors should771

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis772

of Normality of errors is not verified.773

• For asymmetric distributions, the authors should be careful not to show in tables or774

figures symmetric error bars that would yield results that are out of range (e.g. negative775

error rates).776

• If error bars are reported in tables or plots, The authors should explain in the text how777

they were calculated and reference the corresponding figures or tables in the text.778

8. Experiments Compute Resources779

Question: For each experiment, does the paper provide sufficient information on the com-780

puter resources (type of compute workers, memory, time of execution) needed to reproduce781

the experiments?782

Answer: [No]783

Justification: The experiments in this paper are focused on benchmarking evaluation of LLM784

outputs and can be replicated without the need for specific compute infrastructure, making785

them accessible to anyone with basic computing resources that could access any LLM API.786

Guidelines:787

• The answer NA means that the paper does not include experiments.788

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,789

or cloud provider, including relevant memory and storage.790

• The paper should provide the amount of compute required for each of the individual791

experimental runs as well as estimate the total compute.792

• The paper should disclose whether the full research project required more compute793

than the experiments reported in the paper (e.g., preliminary or failed experiments that794

didn’t make it into the paper).795

9. Code Of Ethics796

Question: Does the research conducted in the paper conform, in every respect, with the797

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?798

Answer: [Yes]799

Justification: Our research conforms to the NeurIPS Code of Ethics.800

Guidelines:801

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.802

• If the authors answer No, they should explain the special circumstances that require a803

deviation from the Code of Ethics.804

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-805

eration due to laws or regulations in their jurisdiction).806

10. Broader Impacts807

Question: Does the paper discuss both potential positive societal impacts and negative808

societal impacts of the work performed?809

Answer: [Yes]810

22

https://neurips.cc/public/EthicsGuidelines


Justification: We discuss how LM Assertions can assist developers in defining important811

LM guardrails effectively within prompting pipelines, enhancing safety and reliability in812

user interactions. We also acknowledge potential risks with the misuse of LM assertions813

to bias information from LM outputs, and consider potential mitigation strategies such as814

highlighting the ethics involved with user-defined assertions in prompting pipelines.815

Guidelines:816

• The answer NA means that there is no societal impact of the work performed.817

• If the authors answer NA or No, they should explain why their work has no societal818

impact or why the paper does not address societal impact.819

• Examples of negative societal impacts include potential malicious or unintended uses820

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations821

(e.g., deployment of technologies that could make decisions that unfairly impact specific822

groups), privacy considerations, and security considerations.823

• The conference expects that many papers will be foundational research and not tied824

to particular applications, let alone deployments. However, if there is a direct path to825

any negative applications, the authors should point it out. For example, it is legitimate826

to point out that an improvement in the quality of generative models could be used to827

generate deepfakes for disinformation. On the other hand, it is not needed to point out828

that a generic algorithm for optimizing neural networks could enable people to train829

models that generate Deepfakes faster.830

• The authors should consider possible harms that could arise when the technology is831

being used as intended and functioning correctly, harms that could arise when the832

technology is being used as intended but gives incorrect results, and harms following833

from (intentional or unintentional) misuse of the technology.834

• If there are negative societal impacts, the authors could also discuss possible mitigation835

strategies (e.g., gated release of models, providing defenses in addition to attacks,836

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from837

feedback over time, improving the efficiency and accessibility of ML).838

11. Safeguards839

Question: Does the paper describe safeguards that have been put in place for responsible840

release of data or models that have a high risk for misuse (e.g., pretrained language models,841

image generators, or scraped datasets)?842

Answer: [NA]843

Justification: Our work focuses on regulating LM outputs and helping LM Pipelines align844

better with the developer’s intent. Our experiments deal with open-source data and do not845

have any safety risks while using LM assertions.846

Guidelines:847

• The answer NA means that the paper poses no such risks.848

• Released models that have a high risk for misuse or dual-use should be released with849

necessary safeguards to allow for controlled use of the model, for example by requiring850

that users adhere to usage guidelines or restrictions to access the model or implementing851

safety filters.852

• Datasets that have been scraped from the Internet could pose safety risks. The authors853

should describe how they avoided releasing unsafe images.854

• We recognize that providing effective safeguards is challenging, and many papers do855

not require this, but we encourage authors to take this into account and make a best856

faith effort.857

12. Licenses for existing assets858

Question: Are the creators or original owners of assets (e.g., code, data, models), used in859

the paper, properly credited and are the license and terms of use explicitly mentioned and860

properly respected?861

Answer: [Yes]862

Justification: We cite and provide references to all the assets we used in our development.863

23



Guidelines:864

• The answer NA means that the paper does not use existing assets.865

• The authors should cite the original paper that produced the code package or dataset.866

• The authors should state which version of the asset is used and, if possible, include a867

URL.868

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.869

• For scraped data from a particular source (e.g., website), the copyright and terms of870

service of that source should be provided.871

• If assets are released, the license, copyright information, and terms of use in the package872

should be provided. For popular datasets, paperswithcode.com/datasets has curated873

licenses for some datasets. Their licensing guide can help determine the license of a874

dataset.875

• For existing datasets that are re-packaged, both the original license and the license of876

the derived asset (if it has changed) should be provided.877

• If this information is not available online, the authors are encouraged to reach out to878

the asset’s creators.879

13. New Assets880

Question: Are new assets introduced in the paper well documented and is the documentation881

provided alongside the assets?882

Answer: [No]883

Justification: Our contributions will be made public within the open-source project with884

detailed documentation for the camera-ready publication if the paper is accepted.885

Guidelines:886

• The answer NA means that the paper does not release new assets.887

• Researchers should communicate the details of the dataset/code/model as part of their888

submissions via structured templates. This includes details about training, license,889

limitations, etc.890

• The paper should discuss whether and how consent was obtained from people whose891

asset is used.892

• At submission time, remember to anonymize your assets (if applicable). You can either893

create an anonymized URL or include an anonymized zip file.894

14. Crowdsourcing and Research with Human Subjects895

Question: For crowdsourcing experiments and research with human subjects, does the paper896

include the full text of instructions given to participants and screenshots, if applicable, as897

well as details about compensation (if any)?898

Answer: [NA]899

Justification: This paper does not involve crowdsourcing nor research with human subjects.900

Guidelines:901

• The answer NA means that the paper does not involve crowdsourcing nor research with902

human subjects.903

• Including this information in the supplemental material is fine, but if the main contribu-904

tion of the paper involves human subjects, then as much detail as possible should be905

included in the main paper.906

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,907

or other labor should be paid at least the minimum wage in the country of the data908

collector.909

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human910

Subjects911

Question: Does the paper describe potential risks incurred by study participants, whether912

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)913

approvals (or an equivalent approval/review based on the requirements of your country or914

institution) were obtained?915

24

paperswithcode.com/datasets


Answer: [NA]916

Justification: This paper does not involve crowdsourcing nor research with human subjects.917

Guidelines:918

• The answer NA means that the paper does not involve crowdsourcing nor research with919

human subjects.920

• Depending on the country in which research is conducted, IRB approval (or equivalent)921

may be required for any human subjects research. If you obtained IRB approval, you922

should clearly state this in the paper.923

• We recognize that the procedures for this may vary significantly between institutions924

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the925

guidelines for their institution.926

• For initial submissions, do not include any information that would break anonymity (if927

applicable), such as the institution conducting the review.928

25


	Introduction
	Related Work
	LM Pipelines: A Motivating Example
	Language Model Assertions
	Assertion-Driven Optimizations
	Assertion-Driven Backtracking
	Assertion-Driven Example Selection
	Assertion-driven Counterexample Bootstrapping

	Evaluation
	Tasks & Metrics
	Dataset and Models
	Strategies
	Results
	H1: Self-Correction via LM Assertions
	H2: Performance via Self-Correction
	H3: Compiling with LM Assertions


	Conclusion
	Implementation
	API Design
	Error Handlers
	Backtracking

	Case Studies
	LongFormQA
	Task
	Metrics
	Constraints Specified

	QuizGen
	Task
	Metrics
	Constraints Specified

	TweetGen
	Task
	Metrics
	Constraints Specified


	Impact on Using Different LLM Instructions
	TweetGen
	QuizGen
	Discussion

	Interesting Examples of Correlated Constraints

